
Source code that talks: an exploration of Eclipse task
comments and their implication to repository mining

Annie T.T. Ying, James L. Wright, Steven Abrams
IBM Watson Research Center

19 Skyline Drive, Hawthorne, NY, 10532, USA

{aying,jimwr,sabrams}@us.ibm.com

ABSTRACT
A programmer performing a change task to a system can
benefit from accurate comments on the source code. As part
of good programming practice described by Kernighan and
Pike in the book The Practice of Programming, comments
should “aid the understanding of a program by briefly point-
ing out salient details or by providing a larger-scale view
of the proceedings.” In this paper, we explore the widely
varying uses of comments in source code. We find that pro-
grammers not only use comments for describing the actual
source code, but also use comments for many other purposes,
such as “talking” to colleagues through the source code us-
ing a comment “Joan, please fix this method.” This kind
of comments can complicate the mining of project informa-
tion because such team communication is often perceived
to reside in separate archives, such as emails or newsgroup
postings, rather than in the source code. Nevertheless, these
and other types of comments can be very useful inputs for
mining project information.

1. INTRODUCTION
Accurate comments on source code can be useful to a pro-

grammer performing a change task. As Knuth suggested in
the literate programming technique, programs should not
only be intended to be executed by computers, but also in-
tended to be read by human [4]. As part of good program-
ming practice, Kernighan and Pike suggested that program-
mers should write comments that “aid the understanding
of a program by briefly pointing out salient details or by
providing a larger-scale view of the proceedings” [3].

Many programmers use comments for purposes other than
describing source code, but yet these comments contain very
useful information to a programmer performing a change
task. One example of such a kind of comments is the Eclipse
task comments [1]. Since March 2003, Eclipse—a popular
open-source integrated development environment—has pro-
vided support for comments that describe tasks to be per-
formed on the source code through the task tag mechanism.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

Using the Java perspective in Eclipse, Java programmers
can embed pre-defined task tag strings, such as “TODO”,
in the comments on the source code and use the task view to
browse a summary of the places in the code with a comment
that contains a task tag. From the task view, a user can click
on an entry and navigate to the corresponding source code.

In this paper, we perform an informal empirical study on
the use Eclipse task comments in Java source code. As a pre-
liminary study, we look at an IBM internal codebase, the Ar-
chitect’s Workbench (AWB). We found that although many
of these comments do not describe the actual source code,
they describe other interesting development aspects, such as
communication and changes that were performed or to be
performed to the source code. For example, some developers
“talk” to colleagues through the source code using a com-
ment such as “Joan, please fix this method.” Such kinds of
comments can complicate the mining of project information
because such team communication and task-oriented infor-
mation is often perceived to reside in separate archives, such
as emails or change request management systems, rather
than in the source code. In addition, these comments typi-
cally contains ad-hoc meta-data, depends on the context of
the code, have a implied scope, and are informal.

The rest of the paper is organized as follows: first, in
Section 2, we present a categorization of Eclipse task com-
ments from our study on the AWB codebase. In Section 3,
we describe the challenges of analyzing task comments in
the context of mining project information. In Section 4, we
discuss some issues with our study. Finally, in Section 5, we
conclude and outline future work.

2. TASK COMMENTS CATEGORIZATION
To explore what information Eclipse task comments con-

tains and what they are intended for, we studied the Eclipse
task comments that were in the AWB code checked out from
the AWB CVS repositories on February 9, 2005. The code-
base consists of 2,213 files. The code contains 221 task com-
ments1.

The AWB project consists of two major parts: a platform
that provides customizable representations and tool support
for models, and a particular instantiation of this platform in
the system architecture domain, which embodies a tool that
helps IT architects transform informal notes into various
formal system architecture models. The source code of AWB
is written primarily in Java and is implemented as an Eclipse

1We define the number of task comments as the number of
lines of Java comments that contain the string “TODO”.

1

plug-in.
Five developers contributed to the task comments in the

version of the AWB code we studied. To preserve the pri-
vacy of the developers, whenever we paraphrase a comment
from the AWB codebase, we have substituted the name of a
developer in a comment with a made-up name–Beth, Joan,
Pam, Rea, or Sue.

In the AWB codebase, we found different uses of Eclipse
task comments. We categorized these different uses, as
shown in Table 1. The first column shows the categories,
each of whose cell belongs to one of the seven main groups:
communication, past tasks, current tasks, future tasks,
pointers to a change request, location markers, and concern
tags. The second column presents an example of Eclipse task
comment found in the AWB code. Some comments belong
to multiple groups, for example, a comment that is both for
communication and for describing a task. For the rest of
this section, we describe the seven categories of comments
and present an examples of comment from each categories.

Each of the sub-sections in the rest of this section de-
scribes a main category and the examples listed in Table 1.

2.1 Communication
We found some cases where developers use the source code

as a medium to communicate to each other.

• In the example labelled “communication: point-to-
point” in Table 1, Sue wrote an Eclipse task comment
dedicated to Joan. Prior to this message, Sue and Joan
had actually discussed the error that was fixed by the
hack referred in the comment. In their discussion, Sue
suggested the hack. Although Joan was not satisfied
with the hack, Joan could not come up with a better
fix. Because of the urgency to get the bug fixed, Sue
just temporarily implemented the hack. To remind
Joan to better fix the error, Sue wrote this comment.

• In the example labelled “communication: multi-
cast/broadcast” in Table 1, Joan may have intended
to only direct this question to Sue, the implementer
of the method referred in the comment. However, this
question may worth directing to other team members
who may be thinking to call this method and thus may
advocate against making the method non-public.

• In the example labelled “communication: self-
communication” in Table 1, the example serves as a
reminder to Pam herself to clean up the tracing state-
ments in the code.

2.2 Pointers to change requests
Some Eclipse task comments denote a task that is part

of a bigger change logged in the change tracking system.
AWB uses their own change tracking system called the ECR
(Enhancement Change Request) system.

• In the example labelled “pointer to a change request”
in Table 1, Pam wrote the two comments to redirect
further details to the change report ECR with ID 327.
Because an Eclipse task comment is in a particular lo-
cation in the code, it often denotes a finer-grained task
that a task logged into the change tracking system.

2.3 Bookmarks on past tasks
We found in the AWB that some comments describe

changes that had been completed. These comments often
denote places where changes to the code may require fur-
ther work.

• In the example labelled “bookmark: hack” in Table 1,
which is the same example as an example we described
in Section 2.1, Sue indicated that she had performed
a code modification which was a hack.

• Another example shows that Eclipse task comments
are used to mark places in the code where the de-
veloper is uncertain about whether the change actu-
ally fixed the defeat. In the task comment labelled as
“bookmark: experimental fix” in Table 1, Joan wrote
this same comment in several places in the code. Al-
though she has completed a fix to a threading problem,
she is not totally confident that fix actually solves the
problem until the system has been used for a while.
Therefore, she marked use this comment to mark the
places that contributed to the fix.

2.4 Current tasks
Most of the comments in the AWB code denotes outstand-

ing tasks that need to be done currently.

• In the example labelled “current task: refactoring” in
Table 1, Pam uses a comment to suggest refactoring,
briefly outlining the current strategy and the suggested
strategy.

• Another example of a current task is a task comment
generated by the Eclipse code generator. When using
Eclipse to generate a Java class from a super-class or
an interface, Eclipse automatically inserts a “TODO”
comment for the generated methods and constructor
stubs, as demonstrated in the example labelled “cur-
rent task: from automatically generated code” in Ta-
ble 1. Eclipse also generates a “TODO” comment for
an empty Java catch black when Eclipse “Encode try-
catch block” functionality is used to generate a catch

block.

2.5 Future tasks
Some tasks cannot be done currently because those tasks

depend on something to be available in the future:

• In the example labelled “future task: once the library
is available...” in Table 1, Pam cannot proceed with
the task of using the “Eclipse-icon-Decorator” mech-
anism in the code depends on the availability of that
mechanism.

• Similarly, in the example labelled “future task: once
some code modification is complete” in Table 1, the
developer cannot perform the task until ECR 317 is
complete.

2.6 Location markers
All tasks comments are location markers – the Eclipse

task view enables a developer to easy view and navigate to
the places in the code with task comments:

2

Categories Example

communication: // TODO an ugly hack for now -sue. Joan, please fix it

point-to-point
communication: // TODO joan: explain why this [method] is public, since it

multi-cast/broadcast is used only internally

communication: // TODO [..] remove tracery if cell-editing is ever stable

self-communication
pointer to a change request RichAttributeComparison.java: // TODO pam: ECR 311: get

copy-text button to work

AttributeViewerImpl.java: // TODO pam: ECR 311: handle the

case of multiple Node-*types*

bookmark: // TODO an ugly hack for now -sue. Joan, please fix it

hack
bookmark: // TODO joan EXPERIMENTAL

experimental fix
current task: // TODO [..] make this work using subtyping, not parsing the

refactoring String type-name!

current task: // TODO Auto-generated method stub

from automatically generated code
future task: // TODO pam: once we have the Eclipse-icon-Decorator

once the library is available... mechanism, use it here

future task: // TODO [..] eliminate this once ECR 317 complete

once some code modification is complete ...
location marker: // TODO

point location
location marker: // TODO Workaround for [..]

range location [..]

// [..] End Workaround
concern tag in 12 places in the code: TODO pam: null-guard case of [..]

[input] corruption

Table 1: Eclipse task comment categorization

3

• For example, the empty comment labelled “location
marker: point location” in Table 1 serves as a location
marker. Considering the context, such a comment can
serve as a reminder that something needs to be done
to the code around the comment.

• Another example, the example labelled “location
marker: range location” in Table 1, precisely denotes
a range of source code that the task comment applies
to.

2.7 Concern tags
To mark the places in the code that are related to a sin-

gle concern [5], developers place the same identifying tag—
which we call concern tag—in the task comments. This
is concern tagging approach is an example of Griswold’s
information transparency techniques, which aim to cap-
ture related parts of the code—especially the ones that are
not well-modularized—by non-programming language con-
structs, such as naming convention, formatting style, or tags
embedded in comments [2].

• In the example labelled “concern tag” in Table 1, the
developer used the same comment to denote 13 places
in the code that relates to an input corruption.

3. ANALYZING COMMENTS
Having investigated the task comments in the AWB code-

base, we see some challenges in using Eclipse task comments
as inputs in repository mining, which are discussed in the
rest of this section.

3.1 Inferring meta-data from a task comment
An Eclipse task tag only provides two pieces of meta-data

than a Java comment, tag creation time and tag severity:
Eclipse logs the time when the task tag is first saved, and
also supports users in defining a severity value for each task
tag type (not for each instance of task tag).

From our study, we see that developers employ common
convention to encode additional meta-data that is not ex-
plicitly supported by a Eclipse task tag. However, some of
types of meta data can still be hard to infer from comments.

Author
Many comments contain the name of the author of the com-
ment. This author information can be helpful for searching
all the comments written by the author. However, parsing
the author information from the comment may require some
care because the format of the format of the author infor-
mation can vary. For example, Pam tends to put her name
preceding a colon, as in “// TODO pam: [..].” Sue some-
times types her name all in letters followed by a dash, as in
“// TODO [..] -sue.” If the source code is kept in a code
repository, an alternative way to infer the author informa-
tion is to associate the author information in the change log
with the comment.

Change request identifiers
An Eclipse task comment sometimes represents a task that a
developer needs to perform as part of the change described in
the change tracking system, as shown in Section 2.2. In such
a case, the developer usually put the change request number
in the comment. For example, in AWB, a change request

is denoted as an ECR (Enhancement Change Request) and
a particular ECR is referred to by its ID, such as in “//
TODO pam: see ECR 327.” The convention for specifying
an ECR is pretty standard, with the ECR number followed
by the string “ECR”.

3.2 Implied context in a task comment
Because the tags are embedded in the code, task com-

ments tend to depend a lot on the context of the surround-
ing code. For example, some task comments tend to use
context-sensitive words which need to be interpreted with
the surrounding code. For example, in the task comment
we have shown in Section 2.1, “// TODO an ugly hack for

now -sue. Joan, please fix it,” the word “it” requires
the previous discussion between Sue and Joan and the code
context to make sense.

Some task comments may not even have words at all, but
the meaning of the task may be apparent to a human. We
demonstrate by an example not from the AWB code, an
empty task comment “// TODO.” Such a comment does not
mean much on its own. However, if we notice that the task
comment is enclosed by a method with no statements, it is
apparent to us that the task is to implement the method.
Such a case can pose challenges to mining algorithms.

3.3 Inferring the scope of a task comment
The scope of the comment is often not apparent because

the comment only denotes a single point in the code. Devel-
opers use different assumptions on what region of code the
comment applies. For example, comments may not contain
any region information, but a developer sometimes uses a
comment that refers to the statement immediately following
the comment, sometimes uses a comment to refer to all the
statements until a blank line is encountered, and sometimes
uses a comment to denote the code in the whole enclosing
scope, such as the empty comment denoting an unimple-
mented method we describe in this section. Although we
have shown in Section 2.6 of one example where the devel-
oper have precisely denote a region that the comment applies
to, that is the only such example from the whole study.

In addition, the task comment may apply to multi-
ple non-contiguous places in code. For example, the
task comment “// TODO pam: remove tracery when NPE

[NullPointerException] is solved.” refers to tracing
statements in many places, not just the statement imme-
diately below the comment. Finding all the places the de-
velopers implied can be challenging for a mining tool.

Furthermore, even the developer may only have a fuzzy
idea of all the places the comment denotes. For example, the
task comment “// TODO -- Beth changed these at some

point, to something Eclipse 3.0 compliant” denote a
fuzzy area of code that was to be changed, as porting the
code to work with Eclipse 3.0 is not a trivial task and re-
quires changes to many places in the code. Thus, a devel-
oper cannot easily specifies all the places in the code that
need to be changed in complete when planning the change.
Therefore, it is very hard for a mining tool to infer such
information.

3.4 Informality in a task comment
In the study, we see that the task comments are typically

more informal and shorter than description from the bug
report or JavaDoc comments. For example, many of the

4

comments only contain one single word or incomplete sen-
tences. This is not surprising because many task comments
are meant for personal reminders and for temporarily use.
Also, because the task comments are embedded in the code,
the fear of clutterness in code may have prevented develop-
ers on elaborating a comment to make it formal. However,
this informality in the task comments can make the min-
ing tools that use natural language processing techniques
challenging to apply.

4. DISCUSSION
In this section, we discuss some issues with our study.

4.1 Significance of Eclipse task comments
To “talk” to other team members through source code, a

developer may use a Java comment, not necessarily a task
comment. However, we did not investigate all the Java com-
ments: The codebase contains 15,748 JavaDoc comments2

and 13,457 non-JavaDoc comments3 , and it was impossible
to analyze all of them manually. Although task comments
only accounts for a small fraction of all the comments in the
AWB codebase, we still chose to examine task comments.
Task comments are likely to be good candidates to contain
information that is relevant to the current development con-
text, as task comments are intended to be more transient—
created and deleted more often—than other comments.

4.2 Generalizability of the results
In this preliminary study, we examined the task comments

of one project. We cannot draw general conclusions about
our task comment categorization from only one project. In
addition, the results from this study may not be generaliz-
able to other projects. The AWB is a small team of less than
ten developers. Programming practices that are peculiar to
a particular developer can dramatically affect the results.

5. CONCLUSION AND FUTURE WORK
In this paper, we have described our preliminary study

on Eclipse task comments on the AWB codebase. We have
found that these task comments contain rich and a wide
range information, as shown in the categorization of task
comments we have presented. Many task comments from
study illustrate some challenges in treating task comments
as input for analysis.

Although the conclusion drawn from our study is not gen-
eralizable to all projects, our study has shown some exam-
ples of task comments being a promising input to analyze.
As future work, one direction of research is to infer the
meta-data and contextual information of task comments,
as such information is not captured by the current Eclipse
task mechanism. Another direction of research is to come up
with novels ways to analyze the inferred meta-data and con-
textual information, together with the content of the task
comments.

6. ACKNOWLEDGMENT
2We define the number JavaDoc comments as the number
Java tokens “/**” in the source code.
3We define the number of non-JavaDoc comments as the
number of Java tokens “//”, plus the number of Java tokens
“/*” in the source code.

We are grateful to the AWB team for lending their code-
base for this study, as well as the prompt and useful help
in understanding the intention of the comments. We would
also like to thank Mark Chu-Carroll and Martin Robillard
for many inspirational discussions. Moreover, we would like
to thank anonymous reviewers for the useful feedback.

7. REFERENCES
[1] Eclipse task tags website. http://127.0.0.1:55317/help/

index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-
preferences-task-tags.htm.

[2] W. G. Griswold. Coping with crosscutting software changes
using information transparency. In Reflection 2001:
International Conference on Metalevel Architectures and
Separation of Crosscutting, pages 250–265, 2001.

[3] B. W. Kernighan and R. Pike. The practice of programming.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[4] D. E. Knuth. Literate programming. The Computer
Journal, 27(2):97–111, 1984.

[5] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communication of ACM,
15(12):1053–1058, 1972.

5

